GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS (10), ELECTRONICS & COMMUNICATION (11), ELECTRONICS & TELECOMMUNICATION ENGINEERING (12) CONTROL SYSTEM ENGINEERING SUBJECT CODE: 2141004 B.E. 4th SEMESTER

Type of course: Modeling, performance analysis and control with potential application to engineering systems.

Prerequisite: Knowledge of Linear differential equations, Differential equations and its solution, and Laplace transform.

Rationale: This course explores the fundamentals of systems and control. The course has two primary focuses:

(1) Understanding and predicting system behavior, and(2) Design and analysis of closed loop control systems.

Teaching and Examination Scheme:

Teaching Scheme C			Credits	Examination Marks				Total		
L	Т	Р	C	Theory Marks		Practical Marks		Aarks	Marks	
				ESE	PA	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	100

Content:

Sr.	Topics	Teaching	Module
No.	Τυρκο		Weightage
1	Introduction to Control Systems: Introduction, Brief History of	3	5-6
	Automatic Control, Examples of Control Systems, Engineering Design,		
	Mechatronic Systems, The Future Evolution of Control Systems.		
2	Mathematical Models of Systems: Differential Equations of Physical	6	12-14
	Systems, Linear Approximations of Physical Systems, The Laplace		
	Transform, The Transfer Function of Linear Systems, Block Diagram		
	Models, Signal-Flow Graph Models.		
3	State Variable Models: The State Variables of a Dynamic System, The	8	14-18
	State Differential Equation, Signal-Flow Graph and Block Diagram		
	Models, Alternative Signal-Flow Graph and Block Diagram Models,		
	The Transfer Function from the State Equation, The Time Response		
	and the State Transition Matrix.		
4	Feedback Control System Characteristics: Error Signal Analysis,	3	6-8
	Sensitivity of Control Systems to Parameter Variations, Disturbance		
	Signals in a Feedback Control System, Control of the Transient		
	Response, Steady-State Error, The Cost of Feedback.		
5	The Performance of Feedback Control Systems: Test Input Signals,	4	8-10
	Performance of Second-Order Systems, Effects of a Third Pole and a		
	Zero on the Second-Order System Response, The s-Plane Root		
	Location and the Transient Response, The Steady-State Error of		
	Feedback Control Systems, Performance Indices, The Simplification of		
	Linear Systems.		
6	The Stability of Linear Feedback Systems: The Concept of Stability,	3	5-8

	The Routh-Hurwitz Stability Criterion, The Relative Stability of		
	Feedback Control Systems, The Stability of State Variable Systems.		
7	The Root Locus Method: The Root Locus Concept. The Root Locus	4	6-9
	Procedure, Parameter Design by the Root Locus Method, Sensitivity		
	and the Root Locus, Three-Term (PID) Controllers.		
8	Frequency Response Methods: Frequency Response Plots, Frequency	5	7-8
	Response Measurements, Performance Specifications in the Frequency		
	Domain, Log Magnitude and Phase Diagrams.		
9	Stability in the Frequency Domain: Mapping Contours in the s-Plane,	6	10-12
	The Nyquist Criterion, Relative Stability and the Nyquist Criterion,		
	Time-Domain Performance Criteria in the Frequency Domain, System		
	Bandwidth, The Stability of Control Systems with Time Delays.		
10	The Design of Feedback Control Systems: Approaches to System	8	15-18
	Design, Cascade Compensation Networks, Phase-Lead Design Using		
	the Bode Diagram, Phase-Lead Design Using the Root Locus, System		
	Design Using Integration Networks, Phase-Lag Design Using the Root		
	Locus, Phase-Lag Design Using the Bode Diagram, Design on the		
	Bode Diagram Using Analytical Methods.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
12-15	15-20	20-25	30-35	20-30			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Modern Control System by Richarc C. Drof and Robert H. Bishop, 11th Edition Person Int.
- 2. Modern Control Engineering by Katsuhiko Ogata, 4th Edition, Prentice Hall of India.
- 3. Automatic Control Systems by Benjamin C.Kuo, 8th Edition, Farid Golnaraghi, John Wiley & Sons.
- 4. Control Systems Engineering by Nagrath and Gopal New Age Publication
- 5. Feedback and Control Systems by Joseph J Distefano 2nd Edition TMH

Course Outcome:

At the successful completion of this course, a student will be able to:

- 1. Apply systems theory to complex real world problems in order to obtain models that are expressed using differential equations, transfer functions, and state space equations
- 2. Predict system behavior based on the mathematical model of that system where the model may be expressed in time or frequency domain
- 3. Analyze the behavior of closed loop systems using tools such as root locus, Routh Hurwitz, Bode, Nyquist, and Matlab
- 4. Design controllers using classical PID methods, root locus methods, and frequency domain methods.
- 5. Devise a safe and effective method of investigating a system identification problem in the lab
- 6. Write a report that effectively communicates the results of an analysis or design.

List of suggested Experiments:

- 1. Simulation of DC motor working
- 2. Simulation of synchros
- 3. Generating standard test signals i.e. step, ramp, unit impulse on a simulator
- 4. Analysis of time response of second order system
- 5. Effect of P, PD, PI, PID Controller on a second order systems.
- 6. Plotting root locus of a given transfer function using a simulator
- 7. Temperature control using PID
- 8. Plotting phase magnitude plot of a given transfer function with a simulator.
- 9. Obtaining frequency response of a common emitter amplifier and plotting on a Bode plot.
- 10. Simulation of a given transfer function using OPAMPs
- 11. Stability Analysis (Root locus, Bode, Nyquist) of Linear Time Invariant System.
- 12. Study of a PLL as a closed loop control system on a simulator.

Use SCILAB/MATLAB or other equivalent software as a simulator.

Design based Problems (DP)/Open Ended Problem:

- Op Amp Differentiating Circuit, Pulse Generating Op Amp, OP Amp Control System, PLL
- Television Beam Circuit,
- Space Shuttle Rocket, Satellite Orientation Control, Roll Angle Control,
- Mars Rover Vehicle, Mars Guided Vehicle Control, Mars Rover,
- Disk Drive Read Write System, Rotating Disk Speed Control, Disk Drive Read.
- Wind Power,
- Embedded Computers,

Lab Work: MATLAB/SCILAB based assignments and simulations covering design, analysis and modelling of control systems relevant to curriculum.

List of Open Source Software/learning website:

Ng-spice/MATLAB, www.nptel.com

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.